Synthesis of an infectious full-length cDNA clone of rice yellow mottle virus and mutagenesis of the coat protein.
نویسندگان
چکیده
A full-length cDNA clone of rice yellow mottle sobemovirus (RYMV) was synthesized and placed adjacent to a bacteriophage T7 RNA polymerase promoter sequence. Capped-RNA transcripts produced in vitro were infectious when mechanically inoculated onto rice plants (Oryza sativa L). Individual full-length clones varied in their degree of infectivity but all were less infectious than native viral RNA. A representative clone, designated RYMV-FL5, caused a disease phenotype identical to that produced by viral RNA except that symptoms were somewhat slower to appear than those induced by viral RNA. The infectivity of RYMV-FL5 was verified by ELISA, Western blot analysis, Northern blot hybridization, RT-PCR, and Southern blot hybridization. Frameshift and deletion mutations introduced into the coat protein cistron demonstrated that the coat protein was dispensable for RNA replication in rice protoplasts. However, the coat protein was required for full infectivity in rice plants, presumably by playing a role in phloem-mediated long-distance movement and possibly in cell-to-cell movement.
منابع مشابه
Heterologous Expression of Potato Virus Y Coat Protein, Isolate Pot187
Background: The advent of recombinant DNA technology has facilitated heterologous expression of proteins from various sources in different host systems including Escherichia coli. If a plant virus coat protein is expressed in the bacterium it can be used as the antigen for antibody preparation. Such a recombinant antigen preparation can be particularly useful where equipment such as ultracentri...
متن کاملEmergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg.
The recessive gene rymv-1, responsible for the high resistance of Oryza sativa 'Gigante' to Rice yellow mottle virus (genus Sobemovirus), was overcome by the variant CI4*, which emerged after serial inoculations of the non-resistance-breaking (nRB) isolate CI4. By comparison of the full-length sequences of CI4 and CI4*, a non-synonymous mutation was identified at position 1729, localized in the...
متن کاملAlternative mutational pathways, outside the VPg, of rice yellow mottle virus to overcome eIF(iso)4G-mediated rice resistance under strong genetic constraints.
The adaptation of rice yellow mottle virus (RYMV) to rymv1-mediated resistance has been reported to involve mutations in the viral genome-linked protein (VPg). In this study, we analysed several cases of rymv1-2 resistance breakdown by an isolate with low adaptability. Surprisingly, in these rarely occurring resistance-breaking (RB) genotypes, mutations were detected outside the VPg, in the ORF...
متن کاملProduction of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants.
We constructed full-length cDNA clones of Sindbis virus that can be transcribed in vitro by SP6 RNA polymerase to produce infectious genome-length transcripts. Viruses produced from in vitro transcripts are identical to Sindbis virus and show strain-specific phenotypes reflecting the source of RNA used for cDNA synthesis. The cDNA clones were used to confirm the mapping of the causal mutation o...
متن کاملCharacterization of the Full Length Coat Protein Gene of Iranian Grapevine fanleaf virus isolates, genetic variation and phylogenetic analysis
The full-length coat protein gene of Grapevine fanleaf virus (GFLV) isolates from Iran was characterized byreverse transcription polymerase chain reaction (RTPCR) and sequencing. The expected 1515 bp coatprotein (CP) gene amplicon was obtained for 16 isolates out of 89 that were identified by double antibodysandwich enzyme-linked immunesorbent assay (DASELISA) in a population ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Virology
دوره 206 1 شماره
صفحات -
تاریخ انتشار 1995